ADT4 495 SRI INTERNATIONAL MENLO PARK CA F/6 9/2 4
ON=LINE PROGRAMMER'S MANAGEMENT SYSTEM. ADDENDUM I. USER'S GUID=-ETC(U) !
| AUG 79 B L PARSLEY» H 6 LEHTMAN, S KAHN F30602-77-C-0185
LASSIFIED : RADC=TR=79=205=-ADD~1 NL

g £
i o b

2z s me

¢

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS-)%L,‘,
i

LEVEL”..

RADC-TR-79-205, Addendum |
Final Technical Report

August 1979

ON-LINE PROGRAMMER’S
MANAGEMENT SYSTEM .
User's Guide to the JOVIAL Debugger

Augmentation Resources Center

ADAQ74495

| Bruce L. Parsley
Harvey G. Lehtman
Susan Kahn

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DDC

==
R oCcT 1 19m []
/ S5MLGLUU G

-

DDC FILE COPY,

it v Natpdpgto

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 1344|

.

79 10 01 001

- -

This report has been reviewed by the RADC Information Office (OI)
and is releasable to the National Technical Information Service (NTIS).

At NTIS it will be releasable to the general public, including foreign {i
nations. g

RADC-TR-79-205, Addendum I has been reviewed and is approved for
publication.

7
APPROVED: %mn(/ ‘7/‘“%‘—

RAYMOND A. LIUZZI
Project Engineer

APPROVED: Wﬂ’ ﬁ/i.-mm)

WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

Db 7 A
3 - B
FOR THE COMMANDER:

JOHN P. HUSS
Acting Chief, Plans Office

.

If your address has changed or if you wish to be removed from the RADC r
mailing list, or if the addressee is no longer employed by your organiil- ¥
tion, please notify RADC (ISIE), Griffiss AFB NY 13441. This will assist :
us in maintaining a current mailing list. g

Do not return this copy. Retain or destroy. W

o
i
L
!

I
|

N T Y T

UNCLASSIFIED
SECURIT L&WASSIFICATION OF THIS PAGE (When Date Entered)
READ INSTRUCTIONS
REP ATION PAGE BEFORE COMPLETING FORM
7 —_L 2. GOVT ACCESSION NO.[3. RECIPIENT'S CATALOG NUMBER
| § | rapcfTR-79- 205 ZrhddeTtm 4

“User' 's Cuide to the JOVIAL Debugger ¥

o

Bruce L./Parsley
Harvey G./ Lehtmah

Susanj/Kahn '-m——-—

L _ON-LINE _}’ROGRAMMER S_MANAGEMENT SYSTEM e)&

‘ 1 RED
‘ q Final ;echnical ;e;'t . ‘L

Sep 77« Mar 79} pum——_—-

i
AW’ORT NUMBER

@ Wnl}waw)

TPERFORMING ORGANIZATION NAME AND ADDRESS
Augmentation Resources Center _

20705 Valley Green Drive \(

Cupertino CA 95014 hktf\\ p P

10. PROGRAM ELEMENT, PROJECT TASK

EA & WORK UNIT JidBk
/ ¢ [T5581hwes]+ y
— /7)==

11. CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (ISIE)
Griffiss AFB NY 13441

T J Augusemie?7 9 ?
13, NUMBER OF PAGES
96

Same

14 MONITORING AGENCY NAME & ADDRESS(if different (zom.Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

Same

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

A_‘A‘l

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Raymond A. Liuzzi (ISIE)

Programming Environments
Computers

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Debugging System Sof tware
On-Line JOVIAL -
Sof tware Engineering Compilers

I ABSTRACT (Continue on reverse aside If necessary and identify by block number)

his report is composed of studies that have been conducted to develop the NLS
system as an on-line programming environment and to provide an on-line JOVIAL
interactive debugger with the capabilities to debug JOVIAL language programs.
The final report contains several design additions to the NLS system to create
an on-line programming environment. A JOVIAL User's Guide prepared in
Addendum Technical Report I provides an extensive set of commands for using the
JDAD Debugger. Addendum Technical Report II provides a generalized approach to
debugging and describes the NLS/NSW Do-All Debugger (DAD).F:

DD , ok 1473

4705287 U

UNCLASSIFI

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

i i

o o A R AN L AN oS iR DML TSIk i b Nl S b S

] UNCLASSIFIED

] SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
")

¢

{
|
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
3
E

SKO 1-May-79 15:U45
Preface

Preface

This document is the User's Guide to the JOVIAL debugger
(JDAD). JDAD is an interactive debugger that can be used to
debug JOVIAL programs running on the TENEX or TOPS-20
operating system. It is based on DAD, a multi-language
interactive debugger that runs on the TENEX or TOPS-20
operating system. DAD has a modular structure. The Frontend
of DAD consists of a command language interpreter and a
grammar. The grammar is a data structure that specifies the
user interface to the debugger. The command language
interpreter follows the grammar and interacts with user. The
backend of DAD consists of three separate modules: a
dispatcher module, a language module and an an operating
system module. The JOVIAL debugger was made by replacing the
language module (LM) module in DAD and modifying the DAD
grammar.

JDAD was written specifically for debugging JOVIAL language
programs. It can interpret all JOVIAL data types, ordinary
JOVIAL tables, the JOVIAL procedure call and return mechanism,
the walkback data, and JOVIAL parameter lists. It can find
the symbol table in a standard JOVIAL program and consequently
knows of all external symbols defined in a JOV1AL program.

The current implementation of JDAD could be expanded to
possess more knowledge about the JOVIAL compiler in the
future. For example, it would be possible to include code in
JDAD to process the ISD (internal symbol dictionary) produced
by the JOVIAL compiler. This would greatly increase JDAD's
knowledge of the JOVIAL program being debugged. It would
allow JDAD to determine JOVIAL instruction boundaries and have
complete knowledge of all data structures.

47237

JUSTIFICATION

ACCESSION for
NTIS White Section

ppe Buff Section [
UNANNOURCED (=]

| pe—
DISTRIBUTIONAVNLABRLTY GODES

L]
Dist. AVAIL. and/or SPECIAL

Users' Guide to the Jovial Debugger i

SKO 1-May-T9 15:45
Table of Contents

Table of Contents

Syntax Conventions Used In This Document --==--- cemeemeaea= - U
Concepts ==veecccccnca- e T T T 6
Entering and Leaving JDAD =eeccerecccccccccacccccrccccncan- 5
Processes ==-eccaccccccca-- cmcecsecmenmea= o e o 0 9 e
Character Sets and Generic Functions =--ceccccc-- e =B
User Input and Debugger Output ==ccccccccecccccccvecae== 11
Frame ----ccececcccccccccaa-- e e TR L L LT P cm=e= 13
Address Lists ===cccecccaa- S e = Y N
Discussion ====ccce--a cmceccccccececen~ il s e e e wow 1Y
Address List Terminators -=~--ccccccccac=- e 15
Formal Definition e=cecccceccccccccccaa- o e e g e 17
Semantics ===cccccccccaaa cemccccnccna- - i . e e 19
Assigning To Address Lists ~--cecccccccccccccccaa- e 93

Two Special Characters ----ccecccccccca--- R o e v e 24
Command Summary =-==-==ce-cececccccccccccccccccccnccenea= am== 25
Debug Command =~---==cceccccccccccccaaca= cemeeesree—aa—- 25
Done Command ===~---ccecccccaccccccccccac== e o o 26
Quit Command -=~-=c-cccccca-a e Y 27
Interrupt Command ---e=cecececcceccccccacccccccccncccccnca= 28
Wheel Command =---====cec-ccecccccccccccaccaccncceacan=n -—== 29
Status Command ~-===cccccccccccea-a-- ceeccccccccccccnaa- 30
Comment Command --=-=<=c-cscccesec-=a- ceecceccceccaa- ~e== 31
Character Command ---===c-e-=- ceecccecccccccccacnans e 3P
Input Command =~==-=e-=--- ceeccecmccccceccecccnacana 1|
Typeout Command =-e-c-ccccmcccceccecccnccccccccccccanaaa- 35
Symbol Command ~==--=cececcccccee-c-- cemccccccccccccncaa 36
Breakpoint Command ===-===ececccccccccaccccaacccceaon ~=== 38
Continue Command =--==-ce-ecccccccccccccccecccccnca= ~-== 143
Free Command -=-----ccccccccccccccaca- i 45
Define Command ~=--ecceccceccac--- cmemecccccccccccccccccacaa 46
Display Command =-e--c-cceccccccececcaccccecccccaccccaa - U8
Find Command --«---ccec--- B T e ceee= 50
Mask Command --=------ meeececceecccccccccccccccncaaa- ~e== 53
Memory Command ===-=--cceccccccccccccccccecccccccncencaca= 54
Qutput Command ===-=ccececccccccccccccccccccccccncanca== 56
Print Command =---=c-cacaccceea- ceecccccccccccccacccc——- 57
Type Command =====c-c--ccecccccccccccccccccccccccaceecan= 59
Value Command ===-=-=-=--ececccccacccccacaaccaa- cocccana 60
Speed Command ===--=cecacccecccccccecccccccccccnca= S —— 61
GFC ®*BSLASHCHAR Command ======--- PR SRS S S 62
GFC ®*EQUALCHAR Command ===weecec-- NSRS ———— weas 63
GFC ®EXCMARKCHAR Command ~veeeccccncccccccccccaa= sessesse Gl
GFC #LSQUARECHAR Command =ee=cccccccccccccccccccax S
GFC ®*QMARKCHAR Command -===ccccccaccccaccccccc=- T 66
GFC #SLASHCHAR Command --<-=ccccca--- S 67
GFC ®*LARROWCHAR Command ===ececcec=a RS 68
GFC ®UPARROWCHAR Command ===e=e== P T comccnee- 69

Users' Guide to the Jovial Debugger

ii

472357

———

A e

SKO 1-May=-T9 15:45
Table of Contents

GFC ®LFCHAR Command ==-=-- ettt 70
GFC ®*TABCHAR Command ----- ,——e———- L L e 71
GFC ®*POUNDCHAR Command --=c-=cccceccccccccccccccccaceea= 72
Common Rules ~=ccccccccaa- e e T R 73
Selectors ==ececccccnccaa- R e L T 717
Expression Evaluation =-===-- e T T T 80
JOVIAL Tables ==e-cee-- cem——- cmm——- TP R R A p—— 82
Single Stepping -====-- cmme—- cm————— cmmeeccmcccccccccc e ———— 83
Appendix I - Alphabetical List of Commands, Rules, and
Selectors ===c-ccecccccacccaa- e ceeemecccccccccccccn———— 84
Commands ====ececccccccccaa cmeecccccccccccccaa e 84
Rules =-=ccccccccccccacaa- B e T ~—--= 87
Selectors ===eecccceccwcaaa- B e T ettt 88
Users' Guide to the Jovial Debugger iid

47257

e SKO 1-May-79 15:45 47237
B General Information About Commands

General Information About Commands
General Format

JDAD commands all have a similar form; most commands begin
with a verb followed by a noun or by typed in text. For
example, the command verb "Find" may be followed by one of
two nouns, "Content" or "Reference".

Command Recognition

JDAD's command recognition mode minimizes the number of
characters the user needs to type and echos the full
command word as soon as it is recognized. For example,
JDAD recognizes the letter "f" as the command word "Find";
as soon as JDAD recognizes the command word, it shows the
entire word. Most of the time, JDAD will recognize a
command word after the user types the first letter;
however, sometimes more than one command word starts with
the same letter. JDAD will recognize the most commonly
used altenative by its first character. The other
alternatives may be specified by typing a space and then
the one or two letters needed to disambiguate the
conflicts.

Prompts and Noise Words

JDAD uses prompts to indicate to the user what it is
expecting the user to type; in general, a prompt is one or
more uppercase letters, followed by a colon.

i The JDAD herald followed by the prompt for a command word,
; “JDAD C:", indicates that JDAD is waiting for the next
command. JDAD is the debugger herald and "C:" is a prompt.
Cnce the user has typed part of a command, JDAD will
respond with the next appropriate prompt. For example,
once the "Find" part of the Find command has been shown,
the user will see "C:". In this case the "C" stands for
"command word" and the user must reply with a command word.
For example, the user may type "r" for the noun
"References". The other letters are used in prompts
include: "T", which means type some text; "OK", which
means type <0K>; "OPT", which means type <OPT>; and "RPT",
which means type <RC>. (The meanings of these special
characters are discussed below.) A slash between letters
in a prompt, it means that the user has a choice. For]
example, "C/OK:" means that the user can type either a |
command word or <OK>.

Users' Guide to the Jovial Debugger 1

— i

SKO 1-May=-T9 15:45 U4T7237
General Information About Commands

After the user types "fr" for "Find Keferences", the user
will see the word "to" in parentheses following the command
word "References". This is a "noise word". Noise words
provide extra information to help the user to understand a
command. In this case, "(to)" means that the user now has
to specify a value to which references should be found.

Control Characters

Many control characters have special functions in JDAD.
Some keyboards have function keys for the control
characters. The table below, gives the usual keyboard

: label for each function key used by JDAD, its function in
JDAD and the equivalent control character.

Notation Function Equivalent
<BC> Backspace character <CTRL-A> or
<CTRL=-H>

<BW> Backspace word <CTRL-W>
<0K> Command confirmation <CTRL-D>
<CD> Command delete <CTRL=X>
<OPT> Option <CTRL-U>
<RC> Repeat command <CTRL-B>

Confirming with <OK>

To tell JDAD that a command or part of a command is
finished, or to indicate that a typein is complete, the
user types <OK>. At the end of a command the user will
often be prompted to type <OK> with an "OK:" prompt; in the
middle of a command there is a choice of adding another

] command word or typing <OK> to end the command, the user
will see a "C/0K:" prompt. To type <OK> at a typewriter
terminal that does not have an OK key, the user presses the
key labeled "RETURN". When an <OK> is typed, the user will
see an exclamation point (!).

{ Optional Alternatives

There are places in JDAD commands where the user has
optional choices. These optional command paths are
accessed by hitting the <OPT> function key (or its
equivalent control character, <CTRL=-U>.)

Users' Guide to the Jovial Debugger
2

R

p——

e SKO 1-May-T9 15:45 47237
L 3 General Information About Commands

Canceling a Command :

<CD> is used to cancel a command. <BC> is used to erase
only the last command word that has been typed. g

Syntactic information: Question Mark

Any time while using JDAD (except in the middle of typing
text), a question mark can be used to get a list of command
words or of all the things that can be done next. When
typed after a "C:" prompt, Question mark shows all the
command words that JDAD will recognize at that point. For
example, if the user types "?" after "JDAD C:", the user
will see a list of all the command words that begin JDAD :
commands. One of these words is "Find"; if the user types r
"f" to begin a Find command and then types "?" after the
"C:" prompt following "Find", the user will see a list of
the command words that can follow Find.

N

e

In the 1list of command words, the symbol "<>" preceding a
command word means that a space must be typed before that
command word.

After the list of command words has been shown, the user
can type a character to begin one of them; the command will
continue as if the question mark had not been used.

At some steps in commands, JDAD is waiting for the user to
type in some text or do something other than begin a
command word. In this case, question mark will show what
: JDAD expects by listing brief instructions that explain the
& choices. The user can then follow one of the instructions
or type <CD> to cancel the command. :

Users' Guide to the Jovial Debugger 3 4

SKO 1-May-79 15:45 47237
Syntax Conventions Used In This Document

Syntax Conventions Used In This Document

With the exception of the formal definition of an address list
(which uses a modified BNF), the following syntactical
conventions are adhered to in the command summaries:

Command words appear with their first letter in uppercase
and the rest of the word in lowercase. When a generic
function character (discussed below) is a command word, it
will be surrounded by double quotation marks ("...").

Noise words appear as lowercase words enclosed in
parentheses.

Alternatives (or paths) for a rule or command-appear as a
list under the rule or command.

The end of a command or rule is indicated by a colon (:).

An uppercase word preceded by an at sign (@) is a reference
to a rule described elsewhere.

An uppercase word preceded by an uparrow (") is a reference
to a selection entity. Selection entity types (text,
character, etc.) are listed in a separate section.

An uppercase word preceded by an asterisk (%) refers to
that character currently serving the generic function
(discussed below) specified.

An uppercase word not préceded by an at sign or up arrow is
a Frontend prompt. These are described under the general
information on commands.

Angle brackets (<>) are used to inclose single character
keystrokes (e.g. <LINEFEED> refers to hitting the linefeed
key on a terminal).

Users' Guide to the Jovial Debugger
4

SKO 1-May-79 15:45 47237
Concepts
3 Entering and Leaving JDAD

Concepts
Entering and Leaving JDAD

The following discussion is relevant to the current release
of the debugger and may change in the future.

To use the JOVIAL debugger (JDAD), run the TENEX subsystem
‘ JDAD from the debugger directory. The particular debugger
] directory is dependent on the host on which the user is
running. For example, currently on the TYMSHARE host
OFFICE-2 the JDAD subsystem can be accessed by typing
<SUBSYS>JDAD to the TENEX EXEC.

When JDAD starts, it will do some initialization and then
prompt you with the JDAD herald followed by the prompt for
a command. JDAD's command language is context dependent,
and until you have specified a program for JDAD to debug,
only a few global commands will be available. Probably the
most useful command at this time is the Debug command in
which you specify which program you wish to debug. After
specifying a program, the full complement of JDAD's
commands will be available. At this time you may set
breakpoints where JDAD will suspend execution of programs
and await further commands. This allows you to check out
your program section by section. Either before starting
execution or during breakpoint stops, you may examine and
modify the contents of any location in core, execute other
instructions, search for references to particular symbols
and perform other tasks to aid in the debugging process.

When you are ready to start execution, give the Continue
command and execution will start at the program's main
entry vector location. (If you do not wish to start at the
main entry vector location, you may use some of the

3 sub-commands of the Continue command.)

It is also possible to splice in JDAD after a JOVIAL
program has begun execution. To do this, type Control-C.
: Then type JDAD to the TENEX EXEC. JDAD will respond with
the the JDAD herald followed by the prompt for a command.
In this case, the full complement of JDAD's command will be
available immediately. JDAD will operate in the same
manner as if it had been started directly from the TENEX
EXEC except that if you give the Continue command with no
sub-commands, execution will resume at the instruction that
was about to be executed when the Control-C was typed.

Users' Guide to the Jovial Debugger 5

SKO 1-May-T79 15:45 472357
kL Concepts
o Entering and lLeaving JDAD

To get back to JDAD later (in case you forgot to set any
breakpoints, or your program is looping, etc.), use the
<CTRL-L> facility. Control-L is a deferred
pseudo-interrupt (PSI), which means that you won't actually
enter the debugger until the control-L is read. If you
wish to enter the debugger immediately, type 2 control-Ls

3 without any intervening typein. To continue execution of

3 what was happening before you re-entered JDAD use the
Continue command.

ey T P T T = A STy T et ey Wi vV

When you are through debugging, you may either enter a
control-C or use JDAD's Quit command. If you are through
debugging a specific (instance of a) program and wish to
debug (a different instance of or) another program, use the
Done command which will ask you for a new program to be
debugged after removing up the previous program from your
address space.

e e

B s S

i
;

Users' Guide to the Jovial Debugger
6

f
i
i
|
|
E
|
|
k

SKO 1-May-T9 15:45
Concepts
Processes

Processes

The debugger is designed to be a multi-tool, multi-process
debugger. This means that a JOVIAL program is allowed to
contain any internal process structure it desires, and the
debugger is able to debug more than one process. The JDAD
commands often use the term "tool" and may require users to
specify tools as objects of commands. A tool is a
collection of one or more interacting, collaborating
processes. Thus a typical JOVIAL program is an example of
a tool. Process is being used in the conventional computer
science meaning of the word: it has its own virtual
programming environment including its own Program Counter
and stack environment.

To handle a multiple number of processes the debugger uses
the concept of an Internal Debugger Handle (IDH). An IDH
is an unique (per debugging session) positive integer.

Each process that the debugger knows about is assigned an
IDH. A user may always refer to a process by its 1DH, and,
in some commands, if the process is the top process, the
user may also refer to it by the the program name.

A process is assigned an IDH when the debugger first learns
of the process. When the debugger is first pointed at a
program, it will determine the process structure for that
program and assign an IDH for each process. Thereafter,
the debugger will monitor the program's execution, and will
assign new IDHs to newly created processes at the time they
are created.

At any time, the debugger can be pointed at one, and only
one, process. This process will be referred to as the
current or active target process. This does not mean that
the debugger can not know about more than one process, nor
that the debugger is not capable of varying the current
target process over time. It just means that at any
instant, all commands are refering to the current process
(with the obvious exception of the Debug command to point
at another process). During a debugging session, when a
breakpoint is encountered, the process containing the
breakpoint will automatically be made the current target
process, regardless of which process was current
previously.

Users' Guide to the Jovial Debugger 7

S

Cha

Users'
8

SKO 1-May=-76 15:45
Concepts
Character Sets and Generic Functions

racter Sets and Generic Functions

Since the debugger on which JDAD is based is designed to
support a number of different languages, and since most
languages do not use the same character sets, it is not
possible for the debugger always to use the same character
to mean the same thing in a command. For example, a
semi-colon character may be a valid character in an
identifier in some languages, and it cannot therefore be
used to separate address ranges (discussed below) in an
address list. Therefore the debugger has adopted the
concept of a generic function and a generic function
character (GFC). A GFC is that character which is
currently serving a specific generic function.

For documentation and communication purposes, it is
convenient to have a generic name to refer to the specific
character that is currently serving a particular generic
function. Thus, while the specific character may change,
it can still be referred to by its generic name. The
generic name for a character is the uppercase word of the
default generic function symbolic name preceded by an
asterisk, e.g. the generic name for the GFC that is
currently serving the generic function of an address list
delimiter (whose default is a semi-colon) is
#SEMICOLONCHAR.

The current values of each GFC can be determined by using
the Character (set) Display command.

The symbolic names anc the meaning of these generic
functions are as follows. The default character used in
JDAD for a generic function will appear under the meaning
column delimited by a left angle bracket (<) and a right
angle bracket followed by a semicolon (>;):

generic function
symbolic name meaning of character

pluschar <+>; the user is using this character as
the arithmetic addition operator

minuschar <=>; the user is using this character as
the arithmetic subtraction operator

timeschar <%>; the user is using this character as
the arithmetic multiplication operator

Guide to the Jovial Debugger

47237

“e SKO 1-May=-79 15:45 47237

("" Concepts
Character Sets and Generic Functions
dividechar <'>; the user is using this character as
the arithmetic division operator
lparenchar <<>; the user is using this character as
the arithmetic left grouping character
rparenchar <>>; the user is using this character as
3 the arithmetic right grouping character
1 blockchar <&>; the user is using this character as

a block delimiter; e.g. the string: stringilé&string?
should be interpreted as symbol string2 in block
string! if & is the current BLOCKCHAR

escapechar <ALTMODE or ESCAPE>; the user is using
this character to mean interpret the next character
as a debugger builtin variable; e.g., ESCAPECHAR

1 followed by a 'Q (or 'q) refers to the builtin

' debugger variable which has the value of the most
recently displayed cell

lmchar <%>; the user is using this character to

mean interpret the next character(s) as a language)
module builtin variable or construct; there are

no language module builtins in the current

implementation of JDAD

commachar <:>; the user is using this character as
an address range delimiter to separate the two
elements of an address range

T AR 45

semicolonchar <3;>; the user is using this
character to separate address ranges within address
lists

larrowchar <_>; the user is using this character as
the debugger assignment character

} tabchar <tab>; the user is using this character
] to mean display the cell addressed by the most
[} recently displayed cell

poundchar <#>; the user is using this character to
mean back up to the previous displayed cell

1fchar <LINEFEED>; the user is using this
A character to mean display the next sequential cell

Users' Guide to the Jovial Debugger 9 {

o

N,y

Users'

SKO 1-May-79 15:45
Concepts
Character Sets and Generic Functions

uparrowchar <">; the user is using this
character to mean display the previous sequential
cell

bslashchar <\>; the user is using this character to
mean display an address list in string mode; in JDAD
this

means as a JOVIAL character variable with length

equalchar <=>; the user is using this character to
mean display the value of the input address list

excmarkchar <1>; the user is using this
character to mean
display cells as ascii values

lsquarechar <[>; the user is using this
character to mean display an address list
numerically

qmarkchar <?>; the user is using this character
to mean tell where symbols in an address list are
defined

slashchar </>; the user is using this character
to mean display an address list symbolically

Guide to the Jovial Debugger
10

47237

IR Vg 1y

Users'

oai

User Input and Debugger Output

SKO 1-May=-T79 15:45
Concepts
User Input and Debugger Output

47237

All communication with the debugger is governed by the
values of 4 records: the permanent and current input mode
records, and the permanent and current output mode records.
At the beginning of most commands (exceptions discussed
below) the permanent input and output mode records are
copied to the current input and output mode records, and
thereafter the command is governed by the value of these
current records.

For example, all numbers entered by the user will be
interpreted as being numbers in the base specified by the
current input mode radix, and all numbers displayed to the
user will be formatted to conform to the current output
mode radix. Two exceptions to this treatment of numbers
are discussed below.

The values of the permanent input and output mode records
can be displayed via the Typeout (mode) and Input (mode)
commands.

Several commands provide for modifying the current input
and/or output mode records for a specific instance of a
command. These ephemeral values are then lost at the start
of the next command except in the cases discussed below.

There are some commands that consist of a single GFC, e.g.,
the assign command as entered by ®*LARROWCHAR. These
commands will use the current values of the input and
output mode commands at their invocation, i.e., the values
of these records that were in effect for the previous
command.

The current input mode radix and current output mode radix
govern the evaluation of numbers with the following two
exceptions:

When specifying or viewing these radixes, the radix will
always be interpreted as being decimal numbers. Thus one
may specify a change to input or output radix of the value
10 by typing 10 even if the current input radix is some
other value.

When specifying a JOVIAL table definition in the Define
Table command, all numbers will be treated as decimal

Guide to the Jovial Debugger 1"

SKO 1-May-T79 15:45 47237
Concepts
User Input and Debugger Output

numbers. However, when a JOVIAL table or table item is
referenced in an address list, all numbers will be
interpreted according to the current radix mode.

Users' Guide to the Jovial Debugger
12

B -~
SKO 1-May-T79 15:45 47237
Concepts
Frame
Frame

On the PDP-10, the JOVIAL procedure calling mechanism is
implemented using a stack. Each procedure call causes an
entry to be made on the stack. The return from a procedure
causes the entry to be removed from the stack. This entry
points back to the word following the call instruction.

The information that can be determined from this entry on
the stack is called the "frame" for the called procedure.
The frame contains the names of the called and calling
: procedure, the contents of the parameter list, the values
5 of the parameters and the return location. When the

1 calling procedure has been compiled with walkback data, the
frame also contains the line number of the call.

A specific register is used by JOVIAL to keep track of the
last entry on the stack. JDAD knows which register is used
and thus can determine the last procedure called, i. e.,
the procedure currently executing.

The JDAD concept 'current frame' refers to the most L
recently displayed frame or the frame on the top of the
stack when a breakpoint is hit or a Control-L is typed.

When displaying frames in JDAD via the "Display" command it
is important to remember that the first entry on the stack
(oldest entry) is the bottom of the stack and the
corresponding frame is referred to by the FB address
element. The last entry on the stack (newest entry) is the
top of the stack and the corresponding frame is referred to
by the FT address element. When a parameter or return
location is included in an address list, JDAD interprets
this to be the parameter or return location for the current
frame: the particular frame (first, last, or scmewhere in
the middle of the stack) which was last accessed by the
user.

Users' Guide to the Jovial Debugger

GRS 3 e

i el St b S~ O SN N o0 it i

SKO 1-May=-79 15:45
Concepts
Address Lists

Address Lists

Discussion

An address list is the basic manner in which a user
refers to elements in the current target process.
Basically, an address list is composed of one or more
address ranges; and an address range consists of one or
two address range elements (AREs). The character that
terminates an address list, while it may modify the
functional use of the address list, is not a part of the
address list itself.

Users' Guide to the Jovial Debugger
14

47237

Address List Terminators

SKO 1-May-79 15:45
Concepts
Address Lists - Terminators

The user may terminate an address list with a number of

different characters,

being specified.
characters,
their meanings,
address lists:
generic character
terminator

#BSLASHCHAR
address list

this means
of 1)
SEQUALCHAR
of the input

SEXCMARKCHAR
address list

®LARROWCHAR
list is
assign a new
entity

SLFCHAR
address list, the

data
greater than
structure)

®LSQUARECHAR
address list

depending on which command is
The terminating character is NOT a
part of the address list.
with their default character values and
that may be used to terminate various

The following are the generic

meaning

the user wishes to see the

displayed in string mode (in JDAD

as a character variable with size

the user wishes to have the value
address l1ist displayed to him

the user wishes to see the
displayed in ascii mode

after each line of the address
the user wishes to

displayed,

value to the just displayed

after displaying the current
user wishes to see the cell (or
structure) whose address is one

the last displayed cell (or data

the user wishes to see the

displayed in numeric mode

Users' Guide to the Jovial Debugger 15

47237

Users' Guide to the Jovial Debugger

SPOUNDCHAR
address list, the

data
immediately
structure)

SCMARKCHAR
the symbols

defined
SSLASHCHAR
address list
®TABCHAR

address list, the
data

displayed cell

®UPARROWCHAR
address 1ist, the

data
less than the

structure)

k7237

SKO 1-May-79 15:45
Concepts
Address Lists - Terminators

after displaying the current
user wishes to see the cell (or
structure) that was displayed

prior to the last cell (or data

the user wishes to find out where

in the entered address list are

the user wishes to see the
displayed in symbolic mode
after displaying the current
user wishes to see the cell (or

structure) addressed by the last

after displaying the current
user wishes to see the cell (or
structure) whose address is one

last displayed cell (or data

SKG 1-May-T9 15:45

Concepts
Address Lists - Formal Definition
v
| 9
Forma2l Definition
ADRLIST := ADRRANGE [®SEMICOLONCHAR ADRLIST] / NULL
ADRRANGE := RANGE / BUILTIN
BUILTIN :=
FRAME / LOCAL / PARAM / PARAMLIST / MEM / PLIST / JFN
/ ERR
ERR := ®ESCAPECHAR ('E / 'e)
JFN := AJFN / RJFN
AJFN := SESCAPECHAR ('J /7 '})
RJFN := AJFN NUMBER [*COMMACHAR AJFN NUMBER]
PLIST := ®ESCAPECHAR ('Z / 'z)
MEM := AMEM / RMEM
AMEM := ®ESCAPECHAR ('M / 'm)
RMEM := AMEM NUMBER [*COMMACHAR AMEM NUMBER]
PARAM := ®ESCAPECHAR ('P / 'p)
PARAMLIST := ®ESCAPECHAR ('P / 'p) ('L / '1)
LOCAL := ®ESCAPECHAR ('L / '1)
FRAME := FSPEC [®%COMMACHAR FSPEC]
i FSPEC := FF / FR / FO / FT / FB / FA
| FF := ®ESCAPECHAR ('F / 'f)
FR := ®ESCAPECHAR ('F / *'f) ('+ / '=) [NUMBER]
FO := ®ESCAPECHAR ('F / 'f) ('0 / 'o)
FT := ®ESCAPECHAR ('F / 'f) ('T / 't)
FB := ®ESCAPECHAR ('F / 'f) ('B / 'b)
FA := ®ESCAPECHAR ('F / 'f) '@ NUMBER
TABLESPEC := SMPLIDENT DIMENSIONLIST
ITEMSPEC := SMPLIDENT #*BLOCKCHAR SMPLIDENT DIMENSIONLIST
H DIMENSIONLIST := '((DIMENSIONRANGE / DIMENSIONRANGE ',
b DIMENSIONRANGE) ')
¥ DIMENSIONRANGE := ('® / NUMBER ': NUMBER / NUMBER)
& see the section on JOVIAL Tables for more details
€ RANGE := EXPRESSION [#COMMACHAR EXPRESSION]
EXPRESSION := :
expressions are defined and discussed in a separate
section
IDENT := BLCKIDNT / SMPLIDNT / NUMBER / BLTNTRM /
METAIDNT
BLCKIDNT := SMPLIDNT #BLOCKCHAR SMPLIDNT
SMPLIDNT :=
| a string composed of valid identifier characters for
| the current language
% METAIDNT := ®LMCHAR SMPLIDNT
| BLTNTRM := BA /7 BB / BLN / BPN /7 BQ / BR / BY
: BA := ®ESCAPECHAR (‘'A / ‘a)
‘ BB := ®ESCAPECHAR ('B / 'b) NUMEBER
BLN := ®ESCAPECHAR ('L / 'l) NUMBER
BPN := ®ESCAPECHAR ('P / 'p) NUMBER
BQ := ®ESCAPECHAR ('Q / 'q)
BR := ®ESCAPECHAR ('R / 'r)
. BY := ®ESCAPECHAK ('Y / 'y)
|
Users' Guide to the Jovial Debugger 117

1 SKO 1-May-79 15:U45 47237
- Concepts
f’*) Address Lists - Formal Definition

NUMBER := a string of digits in the current input mode
radix

Users' Guide to the Jovial Debugger
18

.!j;r

Users'

SKO 1-May-T79 15:45
Concepts
Address Lists - Semantics

Semantics
ADRLIST := ADRRANGE [®#SEMICOLONCHAR ADRLIST] / NULL

the NULL address list is equivalent to entering the
last input address list

ERR := #ESCAPECHAR ('E / ‘'e)

used to show the last operating system error incurred
by the current target process

AJFN := ®ESCAPECHAR ('J / 'j)

used to display an indication of the files being used
(listed by their JFNs; equivalent to the TENEX
FILSTAT command and the TOPS-20 INFORMATION FILES
command.)

RJFN := AJFN NUMBER [®COMMACHAR AJFN NUMBER]

used to display an indication of names and statuses

of files being used for file numbers NUMBER [to
NUMBER]

PLIST := ®ESCAPECHAR ('Z / 'z)

used as a shorthand notation to be equivalent to the
previously typed in address list

AMEM :=z= ®ESCAPECHAR ('M / 'm)
used to show the utilization of the address space of

the target process. Equivalent to the TENEX MEMSTAT
command.

RMEM := AMEM NUMBER [®#COMMACHAR AMEM NUMBER]

used to show the utilization of the address space of
the target process for pages NUMBER [to NUMBER]

'

PARAM := ®ESCAPECHAR ('P / 'p)

used to show the formal parameters of the current
frame

Guide to the Jovial Debugger 19

47237

FF

FR

FO

FT

FB

FA

20

SKO 1-May=-T79 15:45 u47237
Concepts
Address Lists - Semantics

PARAMLIST := ®ESCAPECHAR ('P / 'p) ('L / '1)

used to show the formal parameter list of the current
frame

LOCAL := ®ESCAPECHAR ('L / '1)

used to show the local variables of the current frame
:= ®ESCAPECHAR ('F / 'f)

FF refers to the current frame. the current frame is
the most recently displayed frame or the frame on the
top of the stack after the debugger is entered

:= ®ESCAPECHAR ('F / 'f) ('+ / '-) [NUMBER]

if NUMBER is not specified it defaults to 1; no
spaces may precede NUMBER; NUMBER specifies the
number of frames to move relative to the current
frame; e.g. if '$ is the current *ESCPAECHAR, and ',
is the current ®COMMACHAR, the FRAME: "$ft, $f-2"
would display the frame on the top of the stack, and

the next two frames towards the bottom of the stack
in the control thread.

:= ®ESCAPECHAR ('F / 'f) ('G / 'o)

used to show the owner frame of the current frame;
the owner of a procedure is its caller; the owner of
a coroutine is the routine that did the openport to
the coroutine.

:= ®ESCAPECHAR ('F / 'f) ('T /7 't)

used to show the top frame on the stack

:= ®ESCAPECHAR ('F / 'f) ('B / 'b)

used to show the bottom frame on th2 stack

:= ®ESCAPECHAR ('F / 'f) '@ NUMEER

used to show the frame whcose mark is NUMBER

Users' Guide to the Jovial Debugger

P ———

s

r— - ——

L —

o SN S RO 5 St NS b S A A N D B R WS S A S U RIS 0.

SKO 1-May-79 15:45 47237
Concepts
Address Lists - Semantics

TABLESPEC := SMPLIDENT DIMENSIONLIST

TABLESPEC is used to show the contents of items in a
JOVIAL table. It is possible to show items with
specific index values or the entire table. The
DIMENSIONLIST is used to indicate which index values
of the TABLE are displayed.

ITEMSPEC := SMPLIDENT 'BLOCKCHAR SMPLIDENT DIMENSIONLIST

ITEMSPEC is used to show the contents of a particular
item in a JOVIAL table. It is possible to show
specific index values of the item or all occurrences
of the item in the table. The DIMENSIONLIST is used
to indicate which index values of the item are
displayed.

BLCKIDNT := SMPLIDNT ®BLOCKCHAR SMPLIDNT

BLCKIDNT is used to refer to the (local) symbol
(specified by the second SMPLIDNT) in the block (or
file) specified by the first SMPLIDNT; e.g., if "&"
is the current ®BLOCKCHAR, then the BLCKIDNT:
"fl&sfilev" would refer to the symbol "sfilev" in
file MLV

METAIDNT := ®LMCHAR SMPLIDNT
METAIDNT is used to refer to language specific
constructs; this notation is not used in the current
implementation of JDAD

BA := ®ESCAPECHAR ('A / 'a)

this entity has the value of the address of the most
recently displayed cell

BB := ®ESCAPECHAR ('B / 'b) NUMBER
this entity has the value of the address at which
breakpoint NUMBER is set; it has the value of zero if
breakpoint NUMBER is not set

BLN := ®ESCAPECHAR ('L / 'l) NUMBER

this entity has the value of the address of the
NUMBER-th local of the current frame

Users' Guide to the Jovial Debugger 21

SKO 1-May-T9 15:45 47237
Concepts
¥ Address Lists - Semantics

BPN := ®ESCAPECHAR ('P / 'p) NUMEER

this entity has the value of the address of the
NUMBER-th formal parameter of the current frame

BQ := ®ESCAPECHAR ('Q / 'q)

this entity has the value of the most recently
displayed cell

BR := ®ESCAPECHAR ('R / 'r)

this entity has the value of the return address for
the current frame

BY := ®ESCAPECHAR ('Y / 'y)

this entity has the value of the most recently
completely evaluated EXPRESSION

Users' Guide to the Jovial Debugger

22

SKO 1-May-79 15:45
Concepts
Address Lists - Assigning to

Assigning To Address Lists

Many commands allow the user to assign to an address
list as it is being displayed. The specification of new
values to be assigned is handled by the @NVLRUL
discussed below.

Users' Guide to the Jovial Debugger 23

- <'w’.

~ R i ORI R R BAX1 5 3 10 s 57 i i S =
R o 3 5 R BT P i UnlTinte R Rl 6 S eSS it

gt

47237

SKO 1-May-T9 15:45 47237
Concepts
Two Special Characters

Two Special Characters

There are two characters used by JDAD as pseudo-interrupts
(PSI) that need a separate discussion. The specific
characters are initialized to <CONTROL-L> and <CONTROL-K>,
but may be changed by the user by using the Interrupt
command.

The first of these characters (initialized to <CONTROL-L>) ‘
is used to get the user to base command mode in JDAD. For
example, a user has inadvertently requested JDAD to display
a large number of cells. Upon realizing the mistake, the
user may type 2 <CONTROL-L>s to abort output and return to
base command mode. Additionally, when tools are executing
(i.e. after the user has given the Continue command), if
- the user wishes to return to JDAD, the user should type one
1 or two <CONTROL-L>s. Since this character is set up as a
deferred PSI, it will not take effect until the character

3 is read if only one <CONTROL-L> is typed. If the user

e wishes immediate action, then two <CCNTROL-L>s should be
typed. (Note that in the case of aborting JDAD output it
may still take a while until the current contents of the
output buffers are empty and the user actually is able to
enter commands to JDAD.)

The second of these special characters (initialized to
<CONTROL-K>) is used to display a short status of tools
while they are executing (i.e. after the user has given the
Continue command).

Users' Guide to the Jovial Debugger
24

SR e

-

SKO 1-May-T9 15:45 47237
Command Summary
Debug Command

Ccmmand Summary

Debug Command

Overview

The debug command is used to point JDAD at a target
process. Once JDAD is pointed at a target process, the
full complement of JDAD commands becomes available.

Syntax
Debug (tool) @TOOLSPEC OK:

TOOLSPEC Rule

If JDAD does not know about any tools yet (as when
JDAD is first started, or after the user has given
the Done command for all active tools):

“TENEX-FILE-NAME:
"lf JDAD does know about some processes:
@ACTIVETOOLS:
“1DH:
OPTION “TENEX-FILE-NAME:

this path allows the user to have one or more
parallel processes executing under JDAD

ACTIVETOOLS Rule

the FE maintained rule of the usenames for the tools
the user is currently debugging

Users' Guide to the Jovial Debugger 25

a1

R TR R i e v - . — B

—— R —————— .
e e ——
. v 4

i e Toosmbitans o

SKO 1-May-T9 15:45 47237
Command Summary
Done Command

Done Command
Cverview

When the user is done debugging a tool, he/she should
issue the Done command. Upon receiving a Done command,
JDAD will do whatever cleanup is necessary with respect
to JDAD's knowledge of the tool. If the user was

! debugging only one tool, or three or more tools, then
JDAD will ask the user to specify which tool should
become the current target tool upon completing the Done
command. :

Syntax
Done (debugging tool) @ACTIVETOOLS OK:
ACTIVETOOLS Rule

see the Debug command

Users' Guide to the Jovial Debugger

26

i R TSI A S L YTV i 5 4 15 L e L R AN

Users'

SKO 1-May-T9 15:45
Command Summary
Quit Command

Quit Command
Overview

The Quit command is used to terminate a JDAD debugging
session and to return the user to the TENEX EXEC.

Syntax

Quit (debugging session) OK:

Guide to the Jovial Debugger

47237

R i
v

oo

Users'

B Y - ameve——

SKO 1-May-T9 15:45 U47237
Command Summary
Interrupt Command

Interrupt Command
Overview

The interrupt command is used to change which characters
will serve the two special functions of returning to
JDAD's base comm:nd mode and of displaying the status of
executing tools.

Syntax

Interrupt Executing (programs & abort output character
should be) “ICHARACTER OK:

This path allows the user to specify which character
will be used to return the user to base command mode.

Interrupt Status (character should be) "ICHARACTER OK:
This path allows the user to specify which character
will be used to cause the display of the status of
executing tools.

ICHARACTER Selector

Any control character not currently serving another
function.

Guide to the Jovial Debugger
28

SKO 1-May-79 15:45
Command Summary
Wheel Command

Wheel Command

Overview

4 The Wheel command is used by JDAD implementers- and

1 maintainers for the debugging and development of JDAD.
Issuing the Wheel comrand makes available commands not
normally available. The Wheel command requires the
- knowledge of a special password. It is mentioned here
only because it may show up in response to a
questionmark (?) typed to see the alternatives
available.

Users' Guide to the Jovial Debugger 29

47237

SIS AT NS e

T i R N S P e

SKO 1-May-T79 15:45 47237
Command Summary
Status Command

Status Command
Overview

The Status commands display the status of the debugger
to the user.

Syntax
Status OK:
Status Verbose OK:

This command provides more information about each
tool being debugged than the default Status command.

Status For (tool) OK:

This command provides information about the current
tool.

Status Verbose For (tool) OK:

This command provides verbose information about the
current tool.

Status For (tool) “IDH OK:

This command provides information for the specified
process.

Status Verbose For (tool) "IDH OK:

This command provides verbose information for the
specified process.

Users' Guide to the Jovial Debugger

30

B e T T

T e 8 O s ML e S NS M B 5 SN 3 Lo sk AN S Sl AL 5 i G AR dOL

SKO T-May-T9 15:45 ~ 47237
Command Summary
Comment Command

Comment Command
Overview

This command is used to allow comments to appear on a
typescript, etc.

[Syntax

Comment “CTEXT:

-/

Users' Guide to the Jovial Debugger 31

T ——

L SKO 1-May-79 15:45
" Command Summary
™ Character Command

Character Command

Overview
These commands are used either to display which
characters are serving which generic functions, or to
modify which character is to serve a specific generic
function.

Syntax
Character (set definitions) Display OK:

This command is used to detérg}ne which characters

are serving which generic functions. Non-standard
definitions will appear first in the resulting
display.

Character (set definitions) Use “FCHARACTER (instead of)
@CHARRULE OK:

This command is used to change which character will
serve a specific generic function.

CHARRULE Rule
"®#PLUSCHAR" (for addition):
"#MINUSCHAR" (for subtraction):
"#TIMESCHAR" (for multiplication):
"#DIVIDECHAR" (for division):

"#LPARENCHAR" (for arithmetic grouping left
delimiter):

"#RPARENCHAR" (for arithmetic grouping right
delimiter):

"#BLOCKCHAR" (for symbol block delimiter):
i "#ESCAPECHAR" (for builtin variable escape):
"#LMCHAR" (for language module escape character):

"#SEMICOLONCHAR" (for address list delimiter):

Users' Guide to the Jovial Debugger
32

k7237

Users'

SKO 1-May-79 15:45
Command Summary
Character Command

"#COMMACHAK" (for address range delimiter):
"#EQUALCHAR"™ (for display value):

"#SLASHCHAR" (for display using permanent typeout
mode):

"®LSQUARECHAR" (for display numerically):
"#ESLASHCHAR" (for display as a string):
"#EXCMARKCHAR"™ (for display in ascii):

"#QMARKCHAR" (for tell where this symbol is defined):
"®LARKOWCHAR" (for assignment):

"#LFCHAR" (for move to next addres: :

"®UPARROWCHAR" (for move to previous address):
"#TABCHAR" (for move to addressed address):

"#POUNDCHAR" (for move to previously displayed
address):

Guide to the Jovial Debugger 33

47237

sl il o NG

SKO 1-May-79 15:45 47237
Command Summary
Input Command

: 2_:;, -

Input Command
Overview

This command is used to display or change the permanent
input mode.

Syntax
Input (mode) Display OK:

Input (mode) @INPTYP OK: !

Users' Guide to the Jovial Debugger
34

e

‘3-———------llIl.l-llIIll'IlllIIlIII-IIIIIIIIIHIIIIIlllll‘

1 S—
E SKO 1-May-79 15:45 47237
E Command Summary
e Typeout Command
8
R
: Typeout Command
Overview
This command is used to display or change the permanent

output mode.
Syntax
Typeout (mode) Display OK:

{ 4 Typeout (mode) E@OUTTYP OK:

Users' Guide to the Jovial Debugger 35

SKO 1-May-79 15:45
Command Summary
Symbol Command

Symbol Command

Overview

A process may have more than one symbol table. (For
example, if different parts of the address space were
compiled and loaded as distinct entities.) The symbol
commands allow the user to tell the debugger of the
location of the symbol tables. When the debugger, and
the appropriate Language Module, is first pointed at a
process, the LM will use the default location for
finding the symbol table.

The debugger makes its own copy of the process' symbol
table. Thus, if a process modifies its symbol table, it
is necessary for the user to give a new "Symbol"
command. (Ultimately this will be do-able
programmatically.) That the debugger uses a copy of the
symbol table is desirable in those cases in which code
executing code accidentally smashes the symbol table.

If a process contains more that one symbol table then
the user can point the debugger to different tables by
use of the symbol command and the debugger will copy the
symbol table the frist time it is pointed to a new
location. However, if a user subsequently points the
debugger to a location previously used, the debugger
will use its previous copy of the symbol table from that
location unless the user specifies that there is a new
pointer at the location.

Syntax

Symbol (table) Display (status) OK:

This command will display which symbol tables the
debugger knows about, indicate which is the current
symbol table, and provide an overview of the current
table.

Symbol (table) Display (status) Verbose OK:
This command will display all the information that
the Symbol (table) Display (status) command displays.
In in addition it will display all the entries in the
current symbol table.

Symbol (table) Display (status) Block OK:

Users' Guide to the Jovial Debugger
36

47237

SKO 1-May-T79 15:45 47237
Command Summary
Symbol Command

This command will display which symbol tables the
debugger knows about and will indicate which is the
current symbol table. It will also display the
boundaries for the symbol table block specified.

Symbol (table) Display (status) Verbose Block OK:

This command will display all the information that
the Symbol (table) Display (status) Block command
displays. In in addition it will display all the
entries in the symbol table block specified.

Symbol (table) Pointer (located at) “SYMADR OK:

Symbol (table) Pointer (located at) “SYMADK OPTION
(undefined symbol table pointer located at) “SYMADR OK:

These two commands will point the debugger to the
symbol (and undefined symbol) table(s) at the
specified location. If the debugger already has a
copy of the symbol table at the specified location,
it will not copy the process' table.

Symbol (table) Pointer (located at) OPTION (new pointer
at) “SYMADR OK:

Symbol (table) Pointer (located at) OPTION (new pointer
at’) "SYMADR OPTION (undefined symbol table pointer
located at) "SYMADR OK:

These two commands will point the debugger to the
symbol (and udefined symbol) table(s) at the
specified location. This version of the command will
force the debugger to make a copy of the specified
symbol table(s) regardless of whether or not it
already has a copy of the symbol table at the
specified location. This is useful if a process has
\ modified its symbol table, or if a process is

2 performing its own swapping in its address space.

al Ch

Users' Guide to the Jovial Debugger 37

SKO 1-May-T9 15:45 47237
Command Summary
Breakpoint Command

Breakpoint Command
Overview

The breakpoint command allows the user to specify that
the debugger (conditionally) be entered just prior to
the execution of an instruction at a specified address
in a target process.

A breakpoint is said to be "hit" when the instruction at

the address specified for the breakpoint is about to be |
executed. After a breakpoint is hit, it either "takes"
and the debugger is entered, or it doesn't take and
normal execution of the target process continues.

For each case, i.e., the breakpoint taking or not,
the user may specify a string that will be fed to the
debugger, as if the user typed it, when the
breakpoint is hit.

The decision as to whether or not a breakpoint takes is
based on the following algorithm:

If a user has specified a procedure to be called when
a breakpoint is hit, this procedure is called and
returns one of three values: take the breakpoint,
don't take the breakpoint, or base the decision on
the proceed mode and counter. If this procedure
returns the third value, or if no procedure was
specified, then the breakpoint will take if the
proceed mode is normal or automatic or if the proceed
mode is count and this breakpoint has been hit count
times already without taking. (The ability to
specify such a procedure is not currently
implemented.)

Every breakpoint that is set, i.e., for which an address
has been specified, has the following attributes
associated with it:

a) its number, “BTNUMBER
When a breakpoint is first set, the user can
request a specific number, or let the debugger
assign an unused number for the breakpoint.

The user uses this number when he or she wishes to
modify or examine the status of the breakpoint.

Users' Guide to the Jovial Debugger
38

T TR T T o T

Users'

SKO 1-May-79 15:45
Command Summary
Breakpoint Command

b) its address, “BTADDRESS

c)

d)

This is the address at which the breakpoint is
set.

Note that specifying an address for a breakpoint
that is already set is equivalent to first
clearing that breakpoint and then setting the
address.

its name, “ERNAME

If and when a breakpoint takes, its name will be
displayed. A name is simply a string (including
the null string) used for information purposes
only. If a user is debugging more than one
process, he or she may choose toc name the
breakpoints set in each process with the
appropriate process name. Names need not be
unique.

its proceed mode

Every set breakpoint has one of three proceed
modes:

Normal mode

Set either by default or by specifying a
proceed count of zero.

In this mode, the breakpoint will take each
time the breakpoint is hit.

Automatic proceed mode
Set by specifying proceed automatically.
In this mode, the breakpoint will take each
time the breakpoint is hit and then the
breakpoint will be continued automatically,
after processing its take command string if
one exists.

Count mode

Set by specifying a non-zero proceed count.

Guide to the Jovial Debugger 39

47237

T ——

SKO 1-May-79 15:45
Command Summary
Breakpoint Command

In this mode, the breakpoint will not take

until the breakpoint has been hit count plus

one times. If a no take command string

exists, then the count times this breakpoint

is hit before it takes, the no take command
string will be executed.

e) its call procedure, “PNAME - NOT IMPLEMENTED YET
f) its take command string

When a breakpoint takes, if this string is
non-null it will be fed to the debugger as if the
user entered it on his or her terminal prior to
accepting input from the user or automatically
continuing.

g) and its no take command string

If a breakpoint doesn't take, and if this string
is non-null it will be fed to the debugger as if
the user entered it on his or her terminal when
the breakpoint is hit and prior to continuing the
breakpoint.

Syntax

Breakpoint Display (all) OK:

This command will display the status of all
breakpoints that are currently set.

Breakpoint “BTNUMBER Display OK:

This command will display the status of breakpoint
“BTNUMBER.

Breakpoint Clear (all) OK:

This command will clear all breakpoints, i.e. make
them not set.

Breakpoint “BTNUMBER Clear OK:
This command will clear breakpoint “BTNUMBER.

Breakpoint Set (at) “BTADDRESS €BOPT:

Guide to the Jovial Debugger
40

47237

e s ———

SKO 1-May=79 15:45
Command Summary
Breakpoint Command

Breakpoint “BTNUMBER Set (at) “BTADDRESS @BOPT:
These two commands will set a breakpoint at the
specified address, and will set any of the attributes
specified. If “BTNUMBER is not specified, then the
debugger will assign a number for this breakpoint.
If "BTNUMBER is specified and it refers to a
breakpoint that is already set, then that breakpoint
will be cleared first, and then set at the new
address with any attributes specified in this
instance of the command.

Breakpoint “BTNUMBER @BOPT1:

This command allows the user to modify the attributes
of breakpoint “BTNUMBER.

BOPT Rule
OK:
@éBOPT1:
BOPT1 Rule
Call (procedure) “PNAME @EOPT:
NOT IMPLEMENTED YET.
This rule is used to specify the name of a
procedure that will get called when a breakpoint
is hit to determine whether or not to take the
breakpoint.
Proceed Count (=) “PNUMBER @BOPT:
This rule is used to plaée a breakpoint in either
normal proceed mode (if “PNUMBER is zero) or in
count mode.

Proceed Automatically @BOPT:

This rule is used to place a breakpoint in the
automatic proceed mode.

Name (for this breakpoint is) “BRNAME @BOPT:

Users' Guide to the Jovial Debugger LR

47237

SKO 1-May-T9 15:45
Command Summary
Breakpoint Command

This rule is used to specify the name for a
breakpoint.

Break (commands are) “BRKCMNDS @BOPT:

This rule is used to specify the take command
string that gets executed when a breakpoint takes.

No (break commands are) “BRKCMNDS @BOPT:
This rule is used to specify the no take command

string that will get executed if a breakpoint is
hit but doesn't take.

Users' Guide to the Jovial Debugger
42

47237

e SKO 1-May-79 15:45 47237
B Command Summary
3 Continue Command

Continue Command

Overview

The continue commands allow the user to continue the

| execution of the process(es) that were executing before

i entering the debugger (regardless of whether the
debugger was entered via a (nested) EXEC DEBUG command

‘ or by the taking of a (nested) breakpoint), or to modify

E the address at which a process will have its execution

I resumed when execution is ultimately continued, and

optionally to modify the speed with which execution will

proceed.

4 Syntax
Continue OK:

This command will continue whatever was going on
before the debugger was entered.

Continue OPTION (address for this process is) “CNADDRESS
OK:

This command will change the address at which the
current target process will resume execution when it |
is ultimately continued.

Continue At “CNADDRESS OK:

This command will change the resume address of the
current target process and then continue what was
going on before the debugger was entered.

Continue At “CNADDRESS @CNSPEED OK:

This command will change the resume address of the
current target process and then continue what was
going on before the debugger was entered, at the
specified execution speed.

Continue @CNSPEED OK:

This command will continue what was going on before
the debugger was entered, but at the newly specified
speed.

Users' Guide to the Jovial Debugger

SKO 1-May-79 15:45
Command Summary
Continue Command

CNSPEED Rule
Normal (speed):

For (one) @SPDRULE:

| Users' Guide to the Jovial Debugger

44

47237

il

TIPS

Users'

Overview

Syntax

Guide to the Jovial Debugger 45

SK" 1-May-T7G 15:45 47237
Command Summary
Free Command

Free Command

Several debugger operations require the use of free
cells in the address space of the target process (e.g.
breakpoint continuing, executing an instruction on the
behalf of the target process). This command allows the
user to specify where the debugger should get the cells
it requires.

Currently the debugger requires 4 cells to implement
breakpoints. It is expected that when instruction
execution on the behalf of the target process,
specifically procedure calls, is implemented, the
debugger will require as many as 2-3 dozen cells
(depending on how many parameters are being passed);

The cells that the debugger is currently using can be
determined via the Verbose form of the Status command.

Free (core available at) “FCADR OK:

s 3
ey . o

T

SKO 1-May=-79 15:45 47237
‘ Command Summary
4 Define Command

———

3
-

e —

Define Command

Overview

This is the command to give the debugger the definition
of a JCVIAL table.

Any number specified in the table and item definition
textual strings, such as item size or table dimensions,
are treated as decimal values; this is independent of
the current or permanent input mode radix for the
debugger.

= e e e —e

ez

Syntax

Define Table (table definition) “TAELEDEFINITION (at
location) “DADDRESSLIST E6ITMRUL

T s ATt

TABLEDEFINITION
The text to define the table is similar to the format
of the table declaration in the JOVIAL language. The
format of this text is given below. i

TAELEDEFINITION := TABLENAME DIMENSIONSPEC
[STRUCTURE] [PACKING] °';

TABLENAME := a valid JOVIAL table name
DIMENSIONSPEC := a valid JOVIAL dimension list

STRUCTURE := a valid JOVIAL structure specifier

SRR i

If STRUCTURE is not specified, serial structure
is assumed.

PACKING := a valid JOVIAL packing specifier

If PACKING is not specified, no packing is
assumed.

ITMRUL Rule
(item definition / OK if done)
“ITEMDEFINITION

0K

Users' Guide to the Jovial Debugger
46

e e VR — | =
L .

Users'

SKO 1-May-T9 15:45
Command Summary
Define Command

This rule allows the user to type in a definition for
each item in the table. When all items have been
specified, the user types OK to terminate the rule.

ITEMDEFINITION

This is a textual stying that defines an item. It is
similar to the format of the table item declaration
in the JOVIAL language. The format of this text is
given below.

ITEMDEFINITION := TABLEITEMNAME ITEMSPEC [PACKING]

LY
’

TABLEITEMNAME := a valid JOVIAL table item name

ITEMSPEC := a valid JOVIAL item description
Currently for floating point items, only single
precision floating point values with default
accuracy has been implemented.

PACKING := a valid JOVIAL packing specifier

If PACKING is not specified, whatever packing
has been specified for the table is assumed.

Guide to the Jovial Debugger u7

47237

SKO 1-May-79 15:45 47237
. Command Summary
" Display Command

Display Command

Overview

This is the basic command for displaying entities
(cells, state information, etc.) in the target process.

Syntax
Display “DADDRESSLIST:
This command will display the specified address list
in the mode specified by the "DADDRESSL1ST terminator

(and for certain values of this terminator will let
the user modify the displayed address list).

DADDRESSLIST Selector

a "DADDRESSLIST is an "ADDRESSLIST that is terminated
by either an OK or @DTERM

DTERM Rule
GPTION (typeout mode) @QUTTYP OK:

This terminator will cause the specified address
list to be displayed in the output mode specified
by @O0UTTYP.

OPTION (typeout mode) @€QUTTYP OPTION (and assign to
address list) OK:

This terminator will cause the specified address
list to be displayed in the output mode specified
by €OUTTYP, and will allow the user to modify the
displayed cells as they are being displayed.

®SLASHACHAR:

#BSLASHCHAR:

®LSQUARECHAR:

®EXCMARKCHAR:

#QMARKCHAR:

SEQUALCHAK:

Users' Guide to the Jovial Debugger
48

sy

e

o 2 o e

SRy U e e e e

SR LSS

SKO 1-May-79 15:45 47237
Command Summary
Display Command

SLARROWCHAR:
STABCHAR:
®POUNDCHAR:
®LFCHAR:

SUPARROWCHAR:

Users' Guide to the Jovial Debugger 49

R e e _ . . P

e

b

Users'

SKO 1-May-T79 15:45 47237
Command Summary
Find Command

Find Command
Overview

The find commands allow the user to display, and
optionally assign to, those cells in an address list
that meet certain content requirements. The user may
specify a mask to select those bits in a cell that he or
she is interested in checking against similar bits in
the value that he or she has specified. In fact, each
cell in the address list is logically ANDed with the
mask and the result is then compared with the AND of the
mask and the specified search value.

The mask used in a reference search is one that will
select the address field of a cell. The mask used for
content and not content searches is the debugger default
mask, unless the user specifies a mask for this instance
of the command. The default debugger mask can be
displayed and mecdified via the Mask command. It is
initially set to select all bits in a cell.

A reference and a content search will display, and
optionally allow the user to assign to, those cells in
the address list for which the above mentioned compare
was equal. A not content search will display, and
optionally assign to, those cells that compare
unequally.

All displayed cells will be displayed in the current
output mode unless the user specified “FADDRESSLIST
terminator modifies the display.

The user may optionally specify an input mode that will
be used to evaluate the specified search value, “FVALUE.

Syntax

Find References (to) @FSPEC (in address.list)
“FADDRESSLIST:

This command will display, in the output mode
specified by “FADDRESSLIST terminator, (and, if this
terminator dictates it, assign to) those cells in the
specified address list whose address field is equal
to the specified “FVALUE.

Guide toc the Jovial Debugger
50

—

Users' Guide to the Jovial Debugger

SKO 1-May-T9 15:45
Command Summary
Find Command

Find Content E€FSPEC (masked by) EMSPEC (in address list)
“FADDRESSLIST:

This command will display, in the output mode
specified by “FADDRESSLIST terminator, (and, if this
terminator dictates it, assign to) those cells in the
specified address list whose selected bits, as
specified by @MSPEC, are equal to the corresponding
bits in the specified “FVALUE.

Find Not (content) @FSPEC (masked by) @MSPEC (in address
list) “FADDRESSLIST:

This command will display, in the output mode
specified by “FADDRESSLIST terminator, (and, if this
terminator dictates it, assign to) those cells in the
specified address list whose selected bits, as
specified my @MSPEC, are not equal to the
corresponding bits in the specified “FVALUE.

FSPEC Rule

“FVALUE:
the search value
OPTION (input mode) @INPTYP (value) “FVALUE:
This rule allows the user to specify a current

input mode that will be used to evaluate “FVALUE
and “MVALUE

MSPEC Rule

OK:
Use the default debugger mask

“MVALUE:

The mask to be used for this instance of the find
command.

FADDRESSLIST Selector

a “FADDRESSLIST is an “ADDRESSLIST that is terminated
either with an OK or @FTERM

47237

SKO 1-May-T9 15:45 47237
Command Summary

i
:".g
™ Find Command
FTERM Rule
#SLASHCHAR:
®EXCMARKCHAR:

OPTION @OUTTYP OK:

OPTION @OUTTYP OPTION (and assign to address list)
OK:

A

Users' Guide to the Jovial Debugger i
52 .

§
B
E
——

A N R it

SKO 1-May-T79 15:45 47237
Command Summary
Mask Command

Mask Command

Overview
This command allows the user to examine or to modify the
default debugger mask, which is used by the Find and
Memory commands.

Syntax
Mask Display OK:
Mask Set (to) “MVALUE OK:

Mask Set (to) OPTION (input mode) @INPTYP (mask value)
“MVALUE OK:

PRSI TT T

I

Users' Guide to the Jovial Debugger 53 i

i 7 G SARPNAP AR o A TR BB il LA T AL # X TN . . . e e o

e —— - e p—— e

SKO 1-May-79 15:45 47237
Command Summary
Memory Command

Memory Command

; Overview

The memory commands allow the user to set (selected
bits) in all cells in the specified address list to the
specified value.

. If the user does not specify to use a mask, then all

' bits in the pertinent cells will be affected. If the
user specifies to use a mask, then he or she may use
either the default debugger mask, or may Specify a mask
for this instance of the command.

If a mask is used then only those bits selected by the
mask will be set, and they will be set to the
corresponding bits in the specified "MNVALUE.

Syntax
Memory (set to) @MNSPEC (in address list) “MADDRESSLIST:
This command will set the selected bits in the cells
in the specified address list to the corresponding
bits in the specified "MNVALUE.
MNSPEC Rule

“MNVALUE:

the value to set the selected bits to
OPTION (input mode) @INPTYP (value) “MVALUE:
this path allows the user to specify a current
input mode that will be used to evaluate “MNVALUE,
and “MVALUE (if one is specified)
MADDRESSLIST Selector

| a "MADDRESSLIST is an “ADDRESSLIST is terminated by
i either an OK or E@MTERM

MTERM Rule

OPTION (masked by) OK:

Users' Guide to the Jovial Debugger
54

—

Users'

SKO 1-May-79 15:45 47237
Command Summary
Memory Command

this path indicates to use the default debugger
mask to select bits in the address list for
modification

OPTION (masked by) “MVALUE OK:

this path allows the user to specify a mask to use
to select bits in the address list to be modified

Guide to the Jovial Debugger o5

SKO 1-May-T79 15:45 47237
Command Summary
Qutput Command

Output Command

Overview

The output commands give the user the capability to
multiplex output to his or her terminal and/or to a
sequential text file. If output is currently going only
E | to a file, the user will not have the ability to modify
cells in an address l1ist unless the Type command is
used. If output is going only to a terminal, the user
can force output to a file by use of the Print command.
When the user first specifies a file, output will be
sent to both the file and the terminal. When specifying
a file, the user can either specify a new file, or an
old file to which the output should be appended.

Syntax
Output (printing) Display:
Output (printing) Append (to file) “OLDFILELINK OK:
Output (printing) To (file) “NEWFILELINK OK:

3 Output (printing) Off OK:

Output (printing) Both (to file and terminal) OK:

Output (printing) Solely (to) File (and not to terminal)
OK:

Output (printing) Solely (to) Terminal (and not to file)
OK:

Users' Guide to the Jovial Debugger
56

e g

SKO 1-May-T79 15:45
Command Summary
Print Command

Print Command

Overview

This command is used to display the specified address
list on the specified file. If there is already a
specified output file, then this is the one that will be
used, and the user will not be asked to specify a file.
(Note that when using this command, it is not possible
to modify the cells as they are being displayed since
they will be displayed on an output file and not on the
user's terminal. Among other things, this may be useful
for "core dumps".)

Syntax
Print “PADDRESSLIST:

This command will display the specified address list
on the current output file in the mode specified by
“PADDRESSLIST terminator.

Print (on file) “NEWFILELINK “PADDRESSLIST:
This command will display the specified address list
on the specified output file in the mode specified by
“PADDRESSLIST terminator.

PADDRESSLIST Selector

a “PADDRESSLIST is an “ADDRESLIST terminated by
either an OK or @PTERM

PTERM Rule
OPT1ON (typeout mode) @OUTTYP OK:
#SLASHCHAR:
#BSLASHCHAR:
®LSQUARECHAR:
SEXCMARKCHAR:
$QMARKCHAR:

#EQUALCHAR:

Users' Guide to the Jovial Debugger

47237

Sy

Users' Guide to the Jovial Debugger

58

STABCHAR:
®POUNDCHAR:
SLFCHAR:
SUPARROWCHARK:

SKO 1-May-T79 15:45
Command Summary
Print Command

47237

;;ﬁ SKO 1-May-T9 15:U45
Command Summary
Type Command

Type Command

Overview

This command is used to display the specified address
1ist (in the specified mode) on the user's terminal
regardless of his output file settings.

Syntax
Type “DADDRESSLIST:

(See the Display command.)

59

Users' Guide to the Jovial Debugger

47237

) ;T i
'g
|
\
E SKO 1-May-79 15:45 47237
E o Command Summary
Pl Value Command

Value Command

Overview

g ——

This command is equivalent to:
Display <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>